Roll No \qquad

F-3858

M. A./M.Sc. (Final) Examination, 2022
 Mathematics
 (Optional)
 Paper Third (i)
 Graph Theory

Time : Three Hours]
[Maximum Marks:100

Note: Attempt any two parts from each question. All questions carry equal marks.

1. (A) Prove that any homomorphism is the product of a connected and a discrete homomorphism.
(B) Prove that if G is a k -regular graph, k is an Eigen value of G . This is simple if G is connected. Every other Eigen value has absolute value $\leq k$
(C) Prove that any square sub matrix of the adjacency
matrix F of a graph G has determinant $+1,-1$ or zero.
2. (A) Prove that any uniquely k - colourable graph is (k -1) connected.
(B) Prove that for any graph G with $\delta>0$,
$\alpha_{1}+\beta_{1}=n$
(C) For any graph G of order $n \geq 2$ without isolated vertices, $\pi_{1} \leq\left\lfloor n^{2} / 4\right\rfloor$ and the partition need use only edges and triangles. Prove.
3. (A) Prove that a graph is triangulated iff every minimal vertex-separator induces a complete sub graph.
(B) Prove that the complement of every interval graph is a comparability graph.
(C) Prove that a graph G is a permutation graph iff G and \bar{G} are comparability graphs.
4. (A) Prove that every group is isomorphic to the automorphism group of some graph.
(B) Prove that if the Eigen values of the digraph D are all distinct, then $T(D)$ is abelian.
(C) Prove that each cycle $C_{n}, n \geq 3$ is chromatically unique.
5. (A) Prove that every digraph without odd cycles has a 1-basis.
(B) Prove that a weak digraph is strong iff each of its blocks is strong.
(C) State and prove vertex form of Menger's theorem.
